Don't Leave Money On The Table!

How to tap into machine data for observability and business analytics

Karun Subramanian IT Operations Expert

www.karunsubramanian.com

About the Presenter

- 20+ Years of experience in Systems and Network Administration, Software Development and Monitoring & Observability
- Passionate about Machine Data Analytics at Scale
- Focused on modernizing IT Operations
- Splunk Certified Architect

What will you learn in this session?

- Identify machine data in your org (Hint: It's lot more than logs)
- The Hidden values in machine data
- Architectural patterns to collect, ingest and index Machine data
- Real world examples on how organizations are tapping into Machine data
- Developing a Machine data strategy

Machine Data

What is Machine Data?

Digital exhaust produced by any device in the Network

Events A state change; an occurrence of something Application Logs Typically diagnostic information, including traces

Metrics Measurement of a property

Machine data answers "What", "Where" and "Why" of the reality of a System

Machine data is everywhere

Authentication Audit Middleware OS **OS** Performance Network device Network packets Web Server

Sensors **IoT Devices** Database **Messaging Systems** CI/CD Automation programs Mail Server LDAP Server

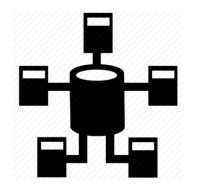
Active Directory Containers Kubernetes/Container Orchestration **Applications** API **Event viewer** Mobile devices Call Detail records

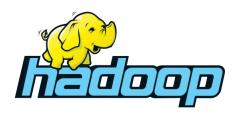
What can you do with it ?

IT Operations/Monitoring A spike in 500 internal server errors

Security/SIEM A spoofing attack Business analytics How many repeat customers in the past month?

Why is it hard to reap benefits from Machine Data?




Fast Millions of records/sec Huge Multiple tera bytes per day

Mostly Unstructured Logs/Traces (Distributed)² A formidable challenge

Fun fact: IDC predicts the annual data generated will be 175 Zetta Bytes by 2025. (175 Billion Terabytes. Go figure)

Why Traditional Datastores won't cut it?

Data Warehouse Complex, long process to get data in (ETL or ELT) Not suitable for search and monitoring use case Hadoop/Hbase Not a low-latency system. Complex data retrieval and processing. Need of an efficient MapReduce job

RDBMS

Machine data is primarily time-series. RDBMS is not suited for time-series data. Scalability becomes a bottleneck.

Give everyone the data analysis capabilities; not just the Data scientists.

How does it look like?

Apache Web Server Access Log

192.168.198.92 - - [22/Dec/2002:23:08:37 -0400] "GET / HTTP/1.1" 200 6394 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1...)" "-" 192.168.198.92 - - [22/Dec/2002:23:08:38 -0400] "GET /images/logo.gif HTTP/1.1" 200 807 www.yahoo.com "http://www.some.com/" "Mozilla/4.0 (compatible; MSIE 6...)" "-" 192.168.72.177 - [22/Dec/2002:23:32:14 -0400] "GET /news/sports.html HTTP/1.1" 200 3500 www.yahoo.com "http://www.some.com/" "Mozilla/4.0 (compatible; MSIE 6...)" "-" 192.168.72.177 - [22/Dec/2002:23:32:14 -0400] "GET /news/sports.html HTTP/1.1" 404 1997 www.yahoo.com "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; rv:1.7.3)..." "-"

Linx PAM log

Jul 7 10:51:24 srbarriga su(pam_unix)[14592]: session opened for user test2 by (uid=10101) Jul 7 10:52:14 srbarriga sshd(pam_unix)[17365]: session opened for user test by (uid=508)

Nov 17 21:41:22 localhost su[8060]: (pam_unix) session opened for user root by (uid=0)

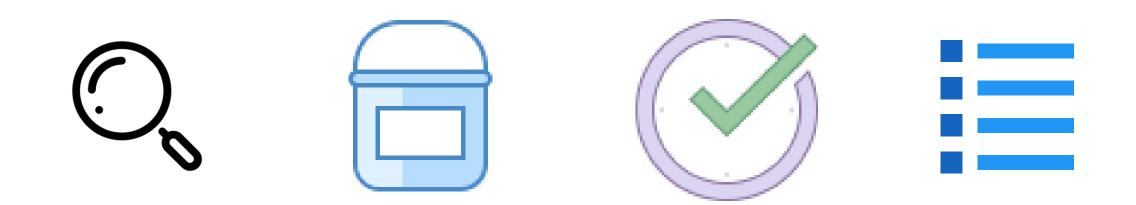
Nov 11 22:46:29 localhost vsftpd: pam_unix(vsftpd:auth): authentication failure; logname uid=0 euid=0 tty= ruser= rhost=1.2.3.4

Linux /var/log/messages

Aug 16 22:49:37 tiger /bsd: uid 1000 on /var/www/logs: file system full

Cisco pix firewall logs

Sep 7 06:25:28 PIXName %PIX-6-302013: Built inbound TCP connection 141968 for db:10.0.0.1/60749 (10.0.0.1/60749) to NP Identity Ifc: 10.0.0.2/22 (10.0.0.2/22) Sep 7 06:25:28 PIXName %PIX-7-710002: TCP access permitted from 10.0.0.1/60749 to db:10.0.0.2/ssh Sep 7 06:26:20 PIXName %PIX-5-304001: 203.87.123.139 Accessed URL 10.0.0.10:/Home/index.cfm Sep 7 06:26:20 PIXName %PIX-5-304001: 203.87.123.139 Accessed URL 10.0.0.10:/aboutus/volunteers.cfm


SSHD log

Aug 1 18:27:45 knight sshd[20325]: Illegal user test from 218.49.183.17 Aug 1 18:27:46 knight sshd[20325]: Failed password for illegal user test from 218.49.183.17 port 48849 ssh2 Aug 1 18:27:46 knight sshd[20325]: error: Could not get shadow information for NOUSER Aug 1 18:27:48 knight sshd[20327]: Illegal user guest from 218.49.183.17 Aug 1 18:27:49 knight sshd[20327]: Failed password for illegal user guest from 218.49.183.17

Source: https://ossec-docs.readthedocs.io

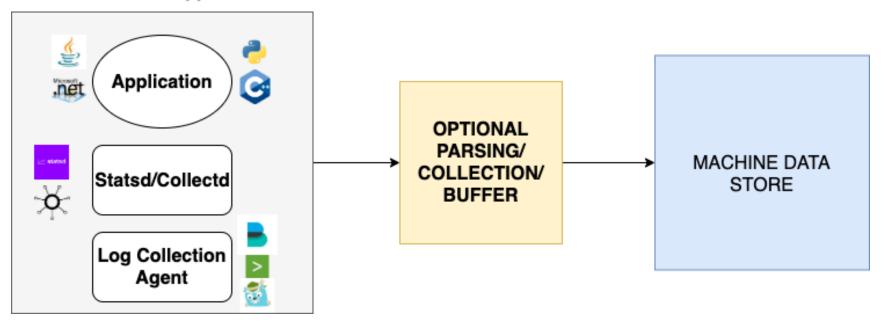
Architecture

Considerations

Search and Visualize (need of an inverted index)

Time bucketing

Near real-time


Index Events, Metrics and Logs

Building Blocks

Collection: Agent Based

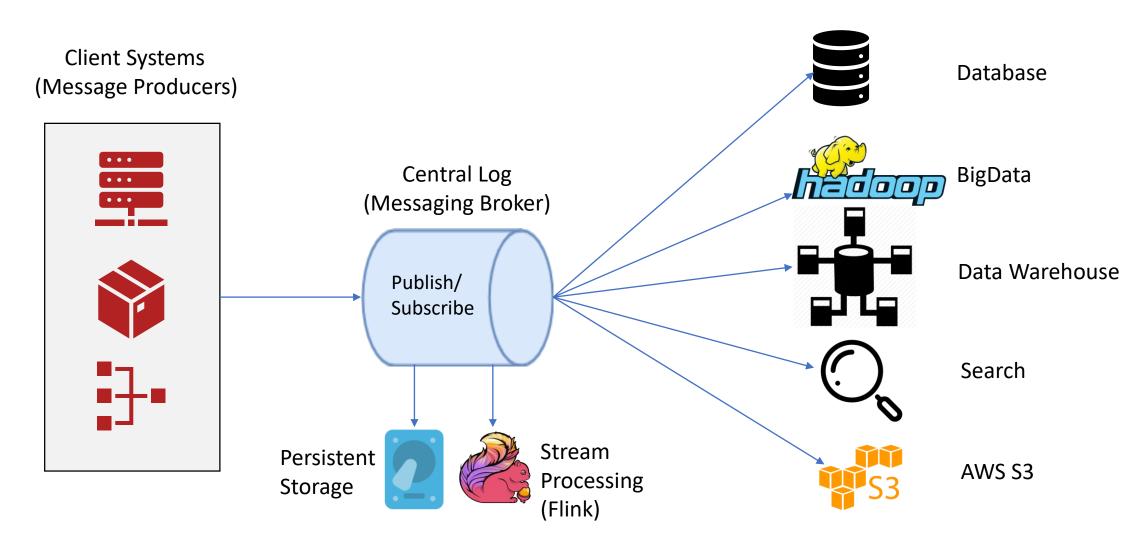
BareMetal/VM/Container Windows/Linux/Appliance/zOS...

Collection: Agent Based

- Agents collect data and push to backend. In most cases, this is the most effective method
- Generally low footprint

Examples:

- collectd/statsd
- APM agents
- Log collection agents (Beats, Splunk Universal Forwarder)
- Tricky in Cloud environments


Collection: Agentless

- Pull mechanism discouraged
- Push from application. Code changes required in some cases
- HTTP POST
- Kafka producer
- Open Tracing (A specification. Some implementations like Jaeger use Agents)

Collecting in the Cloud

- Inherently difficult due to the ephemeral nature of the containers
- Docker/Kubernetes documentation is NOT clear when it comes to application logs
- Use Agentless mechanisms (HTTP, kafka producer) for application logs
- Use native mechanisms (Fluentd) for Container logs

LOG Middleware

LOG: Why a messaging middleware?

- Separation of subscriber and producer
- Buffering
- Speed of processing
- Retention
- Stream processing

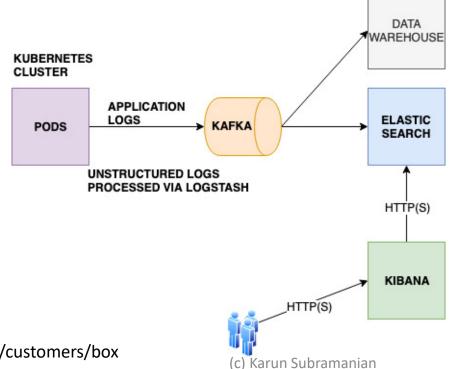
The Kafka difference

Speed Can easily achieve 2 Million messages/sec Data Persistence Configurable retention (Default 7 days) Scales Linearly Partitioning log helps in scaling linearly.

Messaging is not new. But never before a messaging system was created with this speed and scalability

Search and Visualization using Timeseries data

- Need of a tool that maintains an inverted index (not much different from traditional search engines.
- A tool that crunches both unstructured text and metrics data
- Need to be able to produce rich visualization
- Examples: Solr, Elastic Search, Splunk


Case Studies

BOX

Cloud Storage Provider

Use case: Observability using Machine Data (Application and Operational Logs)

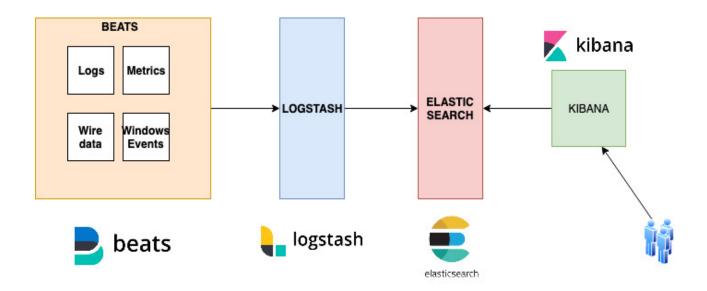
20 TB/day ingestion, 180 billion documents, 190TB total size

Source : https://www.elastic.co/customers/box

Carnival Cruise Lines

World's Largest Cruise Line

Use case: Observability using Machine Data (Application and Operational Logs), Security


Data Sources: Applications, Satellites, Shipboard systems, Connected devices

Consolidates data from all the ships and corporate offices around the world

Source : https://www.splunk.com/en_us/customers/success-stories/camival.htmlramanian

Harel Insurance & Financial Services

- One of Israel's largest insurance groups
- Use Case: IT Operations
- 25 Billion documents, 14.5 TB Total data size

Source: https://www.elastic.co/customers/harel-insurance-and-financial-services

Machine Data Strategy

Execution

- Establish an on-boarding process
- LOG (Kafka) the central component
- Dev team owns the content & structure of data
- Search and Visualize Platform
- Attack OS metrics first, if applicable

Next Gen IT Ops: Stream processing Machine data

To reap benefit from Machine Data, you must be able to collect, index, correlate and analyze in near realtime

Questions?