What to choose from? So many Machine Learning techniques

Kashif Riaz

Vice President Architecture & Engineering

Ameriprise Financial

Introduction

Something about me

0

Brief overview of AI

Importance of Machine Learning in various sectors

Today's agenda: Understanding the variety of Machine learning techniques in layman's terms and how to choose the right one Well maybe a bit technical – Promise no

math!

Something about me

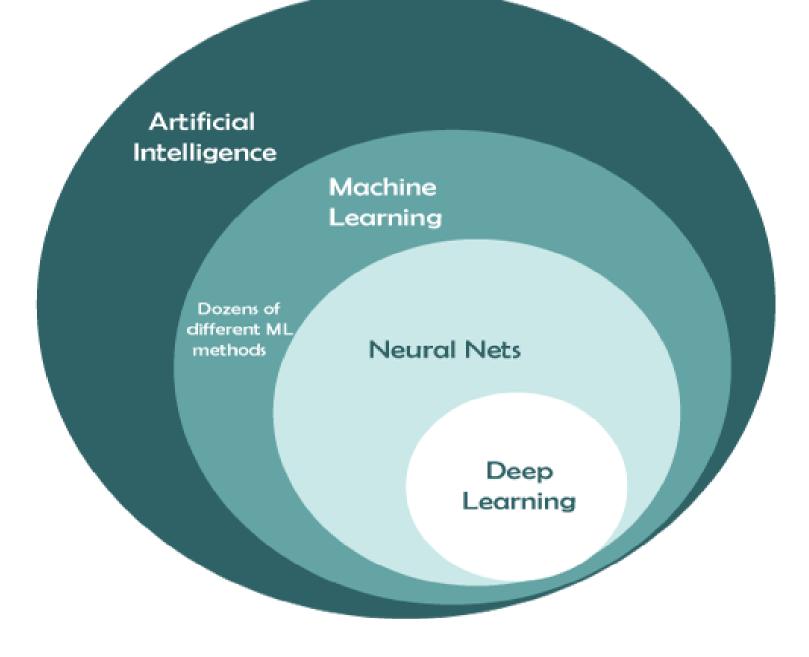
- Passionate about human languages
- Expertise in intelligent processing for
 - non-Latin language e.g., Arabic, Chinese. Turkish, Hindi
 - resource scarce languages e.g., Persian, Urdu
 - Morphological Rich Languages (MRL) e.g., Arabic, Russian, German, Hindi, Urdu
- Enterprise Architecture of large-scale systems
- Al and Data Strategy
- Doctorate in Computer Science, specializing in Information Retrieval, NLP, Machine Learning, and computational linguistics
- Patents for question-answering systems, and AI-based reading technology for the learning-disabled, ESL, and geriatric population

Introduction to AI

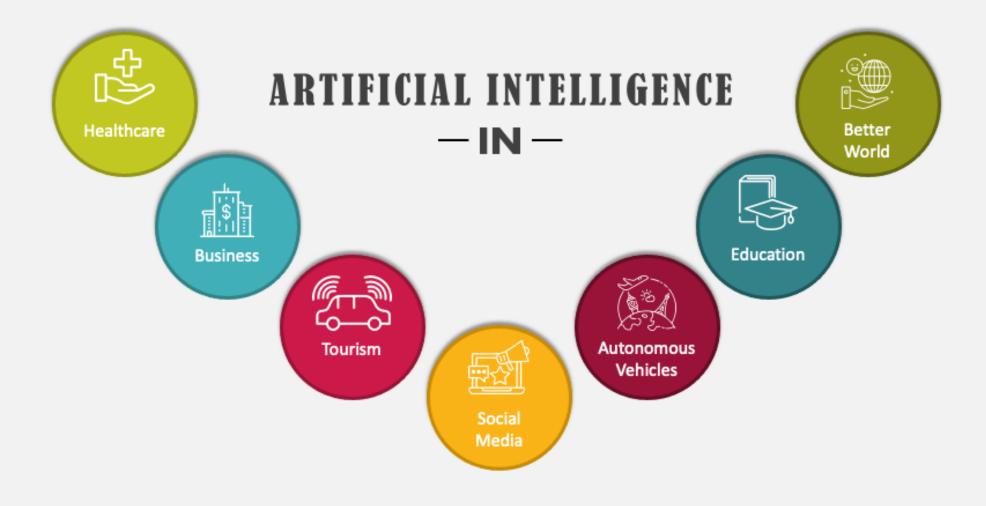
- The term was coined by Marvin Minsky at Dartmouth College in 1954. He was thinking that there could be a machine that could pass the **Turing Test**
- What is a Turing test?
 - a test requiring that a human being be unable to distinguish the machine from another human being by using the replies to questions put to both.
 - Did ChatGPT pass the Turing test?
- Eliza: The results were not conclusive. Machine translation examples between English and Russian were poor.
 - Causes: lack of data, the complexity of languages
 - The machines were slow --> why?
 - Al-Winter

The AI Spring

The boost in the field in AI came about as more data became available, more computing power came through, and rule-based methods started to get replaced by statistical and probabilistic-based methods.

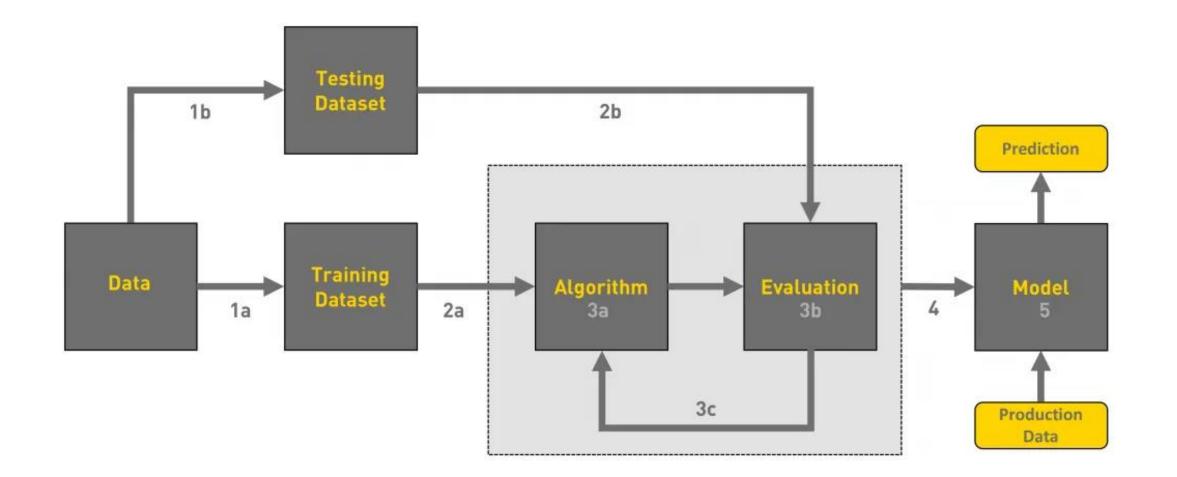


Today, we are surrounded by AI.


From assistants such as Amazon's Alexa Predicting what we may like to buy next.

AI is typically defined as the ability of a machine to perform cognitive functions we associate with human minds, such as perceiving, reasoning, learning, and problem-solving. For example, computer vision, virtual agents, etc.

APPLICATIONS OF AI



Source : 360DigiTMG.com

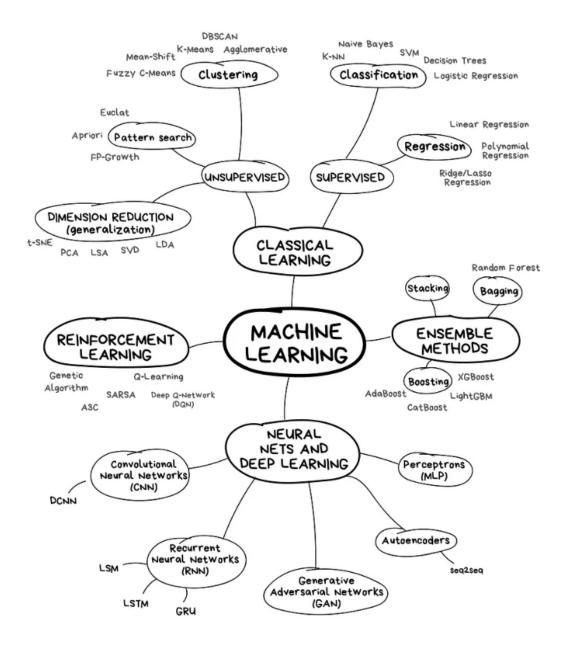
Machine Learning – A definition

- Machine learning is a subfield of AI that involves learning patterns from input data. The algorithm makes decisions or predictions, without explicitly being programmed to perform the task.
 - Since it is not programmed, it is a model
- A machine learning model is an expression of an algorithm (Nvidia)
- It is a trivial/nontrivial equation that describes a set of input data and minimizes error when unseen data is provided
- Layman's terms machine learning is like teaching computers to learn from experience
- Examples
 - Self-driving cars
 - Virtual agents conversational bots

Machine Learning – Process

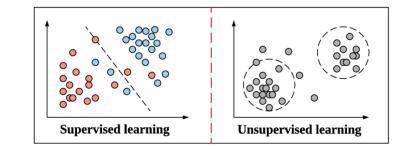
Why so many techniques

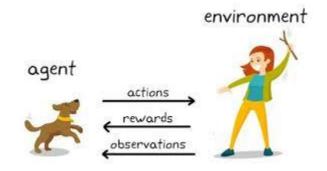
It is all about the data

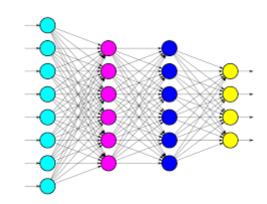

- Numerical data, categorical data, textual data, image data
- Sparse data
- Data quality
- Complicated features

Diverse applications

- Mission-critical applications
- Different tools for different tasks in the toolbox, we use different techniques for different problems
- Compliance, explainability
- Cost of training
 - GPU
 - Data accumulation
 - Annotations




The world of Machine Learning



What we will cover today

- Classical Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Semi-supervised Learning

• Reinforcement Learning

Neural Networks

• Deep Learning

Supervised Learning

What it is	When to use it	How it works	Algorithms
An algorithm that uses training data and feedback from humans to learn the mapping of inputs to a given output. For example, housing prices increase, when interest rates decrease	 When you have a mechanism to label the input data for training. We know which behavior we want to predict on unseen data 	 A human labels the data for training to create a model. If the fish swims upstream and is pink in color, then it is salmon Once the training is complete, try it on unseen data and fix errors if present 	 Linear Regression Logistic Regression Discriminant Analysis Decision Trees Naïve Bayes Support Vector Machine Random Forest AdaBoost Gradient-boosting trees Simple Neural

network

Supervised Learning models and Business use cases

Algorithm	Description	sample business use case
Linear Regression	A method to understand the correlation	Optimize price points
Logistic Regression	Extension of linear regression that's used for classification tasks. Output is binary	Predict if the skin lesion is benign by looking color, shape, size etc.
Linear / Quadratic Discriminant	Upgrades a logistic regression to deal with non-linear problems. The correlation is not linear with outputs	Predict client churn Predict a sales likelihood of closing
Decision Tree	Classification that splits the data into branches	Decision tree for interview screening
Support Vector Machines	Draws an optimal division between classes	Predict how likely Ad will be clicked
Naïve Bayes	Determines probability based on previous events	Spam filters: Misspelling in the email
Random Forest	Generates multiple decision trees and takes the majority vote of them to predict the output	Predict call volumes in call centers.
AdaBoost	Generates multiple models and picks the best one	Fraud detection on credit card
Gradient Descent	Creates multiple decision trees, each fixing the error of the previous one. Output is a prediction from all trees	Forecast product demand and inventory levels
Simple Neural Network	Simple NN, of an input layer, a hidden layer, and an output layer to classify	Prediction if a patient will join the health care program.

Unsupervised Learning

What it is

- An algorithm that explores input data when there is not output class is given.
- Discovers groupings and identify patterns

For example,

customer demographic data or topics in news feeds.

When to use it

How it works

- When you don't have labeled data When you don't know the output classes. You want to discover the patterns. Think of the night sky
- The cost of labeling the data is too high

- The algorithm receives the unlabeled data containing e.g. thousands of news articles.
- It infers as structure from the data. The algorithm identifies groups of data (clusters) of topics

Algorithms

- K-means clustering
- Gaussian mixture model
- Hierarchical clustering
- Recommender systems Netflix
- Agglomerative Clustering
- Principal Component Analysis
- Latent Semantic Analysis

Unsupervised Learning models and Business use cases

Algorithm	Description	sample business use case
K-means Clustering	Categorizes data into K number of groups. Each group contains data with similar characteristics automatically determined by the algorithm	Segment customers into groups based on age, and income for marketing campaign.
Gaussian Mixture model	The input data is assumed to be generated from several Gaussian distributions	Segment employees based on likelihood of attrition
Hierarchical Clustering	Unlike k-means, it does not require the number of clusters to be specified in advance. It creates a tree of clusters called a dendrogram	Cluster loyalty card customers into progressively more micro-segmented groups
DB Scan	Identifies the cluster based on high high-density data points	Social network analysis, Movie watching preferences, anomaly detection
Principal component analysis	It is a dimensional reduction technique that transforms data into a new coordinate system	Clustering of the night sky. SETI program

Reinforcement Learning

What it is

- An algorithm that learns the task by maximizing the rewards it receives from its actions.
- Maximizing points, it receives on return on investments
- Search engine algorithm as it improves by getting feedback from users

When to use it

- When you don't have lots of training data.
- The end state is not clearly defined.
- The only way to learn about the environment is through interacting with it.

How it works

- The algorithm (agent) takes an action on the environment
- Trading a financial stock and learning that you have increased the asset value
- The algorithm optimizes over time by taking the best series of actions to maximize rewards.

Algorithms

- Q-Learning
- Deep Q-networks (DQN)
- Policy Gradients
- Actor Critic Methods
- Proximal Policy Optimization (PPO)
- Temporal Difference Learning

Reinforcement Learning Business use cases

Optimize trading strategy for an options-trading portfolio

Rob advisors

Balance the load of electricity grids in varying demand cycles

Self-driving cars

Optimize pricing in real-time for online auction of a product with limited supply

Uber or Lyft pricing

Deep Learning

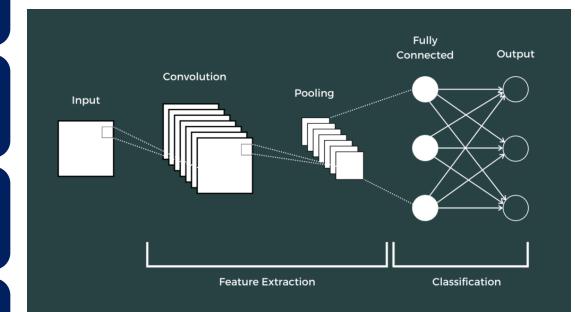
What it is	When to use it	How it works	Algorithms
 An algorithm based on how the human brain works. It is based on neural network design. It can process large amounts of input data. Learns like a child through examples 	When the problem is increasingly complex The output or results require high accuracy	 The algorithm mimics a human brain where the information is stored in multiple layers. Each layer gives more context and is connected through nodes The connection between the nodes has weights that are learned by examples. 	<list-item><list-item></list-item></list-item>

Convolutional Neural Network (CNN)

What it is	When to use it	How it works
A multi-layered neural network with a special architecture to extract complex features at each layer to determine the output	Unstructured data set Images recognition Anomaly detection Facial recognition NLP	 A CNN takes images of cats as an input. It processes all the pixels in the image. This image is received through the input layer The hidden or inner layers of the model identify unique features like eyes, a tail, whiskers The CNN can now classify a different image of a cat with a different color. If it identifies the unique features that it

learned. It identified it as a cat

• Video Analysis

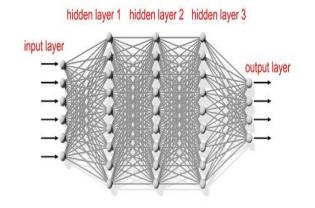

Convolution Neural Network Business use cases

Diagnose health disease from a medical scan

Detect company logo in social media

Sentiment analysis of customers by reading faces after trying a product

Recognizing detective products in a assembly line

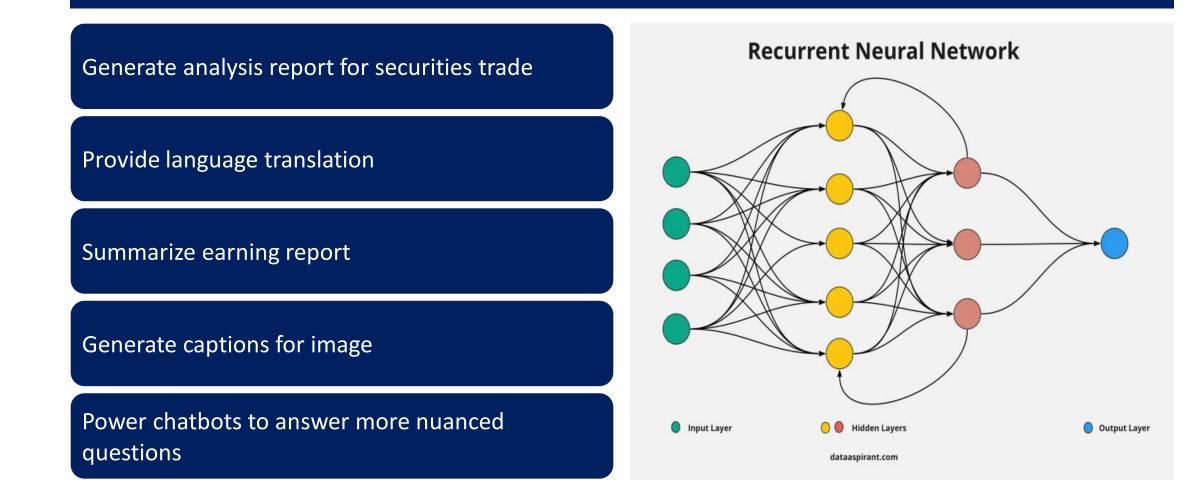

Recurrent Neural Network (CNN)

What it is

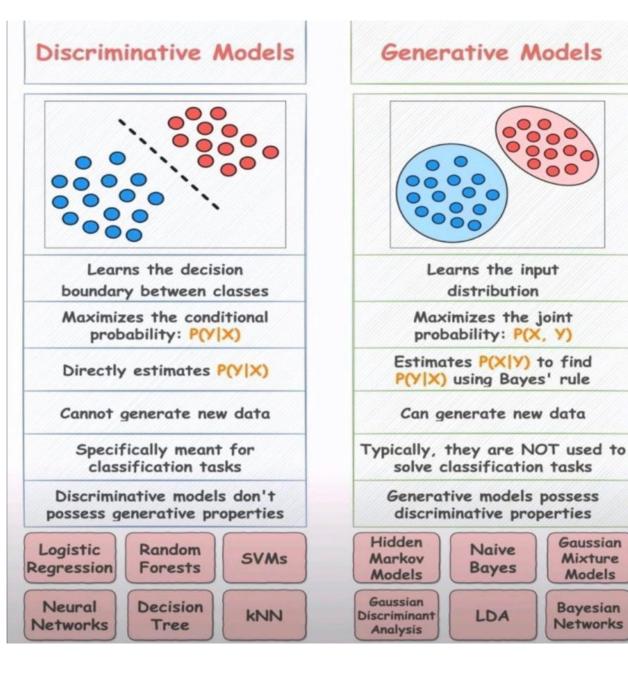
- A multilayered neural network that stores its learnings and information in the context nodes.
- It can learn data sequences and the output is another sequence or a value

When to use it

 Time Series data or text or audio sequences



deep neural network


How it works

- When we are trying to predict the next word in the sentence. "Are you available?"
- The RNN receives the first letter "Are" and changes it into a vector. This vector is stored as the first input of the sequence. The process repeats for 2nd (you) and the 3rd sequence (available).
- After seeing "available". The nodes assign probability from the complete English vocabulary of what could be the next possible word to complete the sequence
- For example, tomorrow will have a higher probability than yesterday

Recurrent Neural Network Business use cases

Machine Learning – **Statistical** Distinction

000

Gaussian

Mixture

Models

Bayesian

Networks

Naive

Bayes

LDA

Conclusion

- Always try to understand the problem you are trying to solve
- Understand the error tolerance of the solution
- Do you want/require a "man in the middle" solution?
- Understand the regulatory and compliance requirements
- Do you want a disruptive solution or want to stay with the pack?
- If multiple algorithms can solve a business problem, always try the simplest one first

Questions